Heterocycles from Substituted Semicarbazides and Thionyl Chloride. 1-0xo-1,2,3,5-thiatriazolidin-4-one

S. D. Ziman

Chevron Chemical Company, Ortho Division, Richmond, California, 94804 Received December 29, 1978

Reaction of thionyl chloride and semicarbazides or thiosemicarbazides produces the novel 1-oxo-1,2,3,5-thiatriazolidin-4-one or 4-thione ring system.

J. Heterocyclic Chem., 16, 895 (1979).

Recently, both Deyrup (1,2) and Chupp (3) have reported that thionyl chloride can be used to generate novel heterocycles when reacted with 2-amino amides or 2-hydroxy aryl amides. We would like to report the synthesis of another novel heterocycle, the 1-oxo-1,2,3,5-thiatriazolidin-4-one or 4-thione system, which results from reaction of thionyl chloride with substituted semicarbazides or thiosemicarbazides.

Results and Discussion.

A series of 1,2,4-trisubstituted semicarbazides and thiosemicarbazides were reacted with one equivalent of thionyl chloride in the presence of two equivalents of pyridine to yield the 1-oxo-1,2,3,5-thiatriazolidin-4-ones and thiones. These are shown in Table I.

By analogy to Deyrup's original work (1), the products of the cyclization could either be the thiatriazolidinone 2(X = 0) or the corresponding 5-imino oxathiadiazolidine 3.

However, the imino structure could be ruled out on the basis of spectral data. In the infrared, no imino band is

Table I

1-Oxo-1,2,3,5-Thiatriazolidin-4-ones and 4-Thiones

	l R¹		R³	x	Nmr (ppm)	Ir (cm-1)		Elemental Analysis			
Compound		R²				CO	Melting Point	Calculated/Found			% Yield (a)
No.							°C	С	Н	N	
9	t-C₄H,	СН,	CH,	o	1.57 (S, 9H), 2.64 (S, 3H),	1700	46.5-48	40.97	7.32	20.49	65
					3.13 (S, 3H)			40.83	7.24	20.37	
10	C ₆ H ₅	CH ₃	CH ₃	0	3.00 (S, 3H), 3.26 (S, 3H),	1725	77-79	48.00	4.49	18.66	82
					7.40 (S, 5H)			48.30	4.85	18.46	
11	3,4-Cl ₂ C ₆ H ₃	CH ₃	CH,	0	3.04 (S, 3H), 3.26 (S, 3H),	1720	108-110	36.73	3.06	14.28	52
					7.23-7.77 (m, 3H)			37.22	3.19	14.52	
12	4-ClC ₆ H ₄	CH ₃	CH,	0	3.00 (S, 3H), 3.26 (S, 3H),	1710	83-84	41.16	3.85	16.18	83
					7.47 (S, 4H)			41.32	3.80	16.25	
13	2,4,5-Cl ₃ C ₆ H ₂	CH ₃	CH,	0	3.10 (S, 3H), 3.29 (S, 3H),	1722	150.5-152	32.87	2.43	12.78	44
					7.56 (S, 1H), 7.63 (S, 1H)			32.96	2.52	12.67	
14	3,4-Cl ₂ C ₆ H ₃	CH ₃	i-C ₃ H ₇	0	2.21 and 1.33 (overlapping	1700	74-75.5	40.99	4.03	13.04	25
					doublet, $J = 6$ Hz, 3H), 3.26			41.37	4.00	13.16	
					(S, 3H), 3.66 (Sept., J = 6)						
					Hz, 1H), 7.13-7.66 (m, 3H)						
15	C ₆ H ₅	CH,	CH,	S	2.93 (S, 3H), 3.33 (S, 3H),	_	119-120	44.81	4.56	17.42	49
					7.56 (S, 5H)			44.76	4.56	17.43	
16	4-FC ₆ H ₄	CH ₃	CH ₃	S	3.10 (S, 3H), 3.60 (S, 3H),	_	86-88	41.70	3.86	16.21	85
					$7.23 (A_2B_2, J = 5 Hz, 4H)$			41.65	3.82	16.30	

(a) After recrystallization

0022 - 152X/79/050895 - 02\$02.25

observed, but only a strong carbonyl bond at 1710-1720 cm⁻¹, which is consistent with a five membered cyclic urea (4). Furthermore, when R₁ is an aryl group such as phenyl or 4-chlorophenyl, the aryl protons appear as a singlet, which is also consistent with structure 2, rather than an imino aryl grouping. While this reaction appears to be a general one, cyclization can be achieved only if certain substituent requirements are fulfilled. In the semicarbazide and semithiocarbazide cases, both the 1- and 2-nitrogen atoms must have an alkyl or aryl substituent. If this is not observed, then acyclic products are formed, as illustrated by the following examples (Equations 2 and 3) (5).

It is also of interest to point out that of the three possible reagents which would lead to the 1,2,3,5-thiatriazolidine system, only thionyl chloride will form a cyclic product. Reaction of semicarbazides with either sulfur dichloride or sulfuryl chloride, in presence of a base, fail to form five membered rings. Also, attempts to oxidize the 1-oxo-1,2,3,5-thiatriazolidin-4-one to the 1,1-dioxo compound failed, and only the imine 8 (6) was recovered (Equation 4).

$$CI = \left(\begin{array}{c} O \\ N - CH_3 \\ S - N - CH_3 \end{array}\right) + m - CIC_6H_4CO_3H \longrightarrow CI = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

$$CI = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

$$CI = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

$$CI = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

$$R = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

$$R = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

$$R = \left(\begin{array}{c} O \\ N - N = CH_2 \end{array}\right)$$

EXPERIMENTAL

General

Nmr were taken on a Varian T-60 Nmr Spectrophotometer in deuterochloroform with TMS as an internal standard. Infrared spectra were taken on a Beckmann Acculab 2 Spectrophotometer. Melting points are uncorrected. All new compounds gave satisfactory elemental analysis. Semicarbazides and semithiocarbazides were prepared from the corresponding isocyanates or isothiocyanates and hydrazines.

Preparation of the 1-oxo-1,2,3,5-thiatriazolidin-4-ones or 4-thiones is illustrated by the following example.

Preparation of 1-Oxo-2,3-dimethyl-5-(4-chlorophenyl)-1,2,3,5-thiatriazoli-din-4-one (14).

A solution of 8.13 g. (0.068 mole) of thionyl chloride in 50 ml. of dichloromethane was slowly added to cooled (5°) solution of 14.6 g. (0.068 mole) of 2,3-dimethyl-4-(4-chlorophenyl)semicarbazide and 10.8 g. (0.136 mole) of pyridine in 250 ml. of dichloromethane. The resulting mixture was allowed to warm to ambient temperature and stirred overnight. It was washed with 2 x 100 ml. water, dried over magnesium sulfate and the solvent evaporated under reduced pressure. The liquid slowly crystallized. Recrystallization (1:1 hexane/benzene) gave 14.7 g. of product, m.p. 83-84°.

REFERENCES AND NOTES

- (1) J. A. Deyrup, J. C. Gill, T. LeBlanc and H. L. Gingrich, J. Org. Chem., 38, 1645 (1973).
 - (2) J. A. Deyrup and H. L. Gingrich ibid., 42, 1015 (1977).
- (3) J. P. Chupp, J. Heterocyclic Chem., 11, 1 (1974); U. S. Patent 3,900,484.
 - (4) J. P. Chupp and D. J. Dahm, ibid., 12, 393 (1975).
- (5) These reactions were run under the same conditions as given in the experimental section. The structures of compounds 5 and 6 were consistent with spectral and elemental analyses.
- (6) Compound 8 was shown to be identical to an authentic sample provided by Dr. D. C. K. Chan of the laboratory.